Matemáticas y Ciencia de Datos
Grado y Doble Grado. Curso 2024/2025.
ANÁLISIS MATEMÁTICO PARA CIENCIA DE DATOS - 803949
Curso Académico 2024-25
Datos Generales
- Plan de estudios: 081F - GRADO EN MATEMÁTICAS Y CIENCIA DE DATOS (2022-23)
- Carácter: Obligatoria
- ECTS: 6.0
SINOPSIS
COMPETENCIAS
Generales
Idear demostraciones de resultados del área de análisis matemático.
Asimilar la definición de objetos matemáticos nuevos, relacionarlos con otros conocidos y deducir sus propiedades.
Formular conjeturas e imaginar estrategias para confirmar o rehusar estas conjeturas.
Transversales
Específicas
ACTIVIDADES DOCENTES
Clases teóricas
Seminarios
Clases prácticas
Trabajos de campo
Prácticas clínicas
Laboratorios
Exposiciones
Presentaciones
Otras actividades
Presenciales
No presenciales
Semestre
Breve descriptor:
En este curso se repasarán las nociones necesarias sobre números complejos para entender y utilizar resultados esenciales sobre teoría de funciones holomorfas, en concreto: el Teorema y Fórmula Integral de Cauchy y sus mútiples consecuencias, y el Teorema de los Residuos de Cauchy con aplicaciones. Igualmente se verán algunas nociones sobre espacios de Hilbert necesarias para entender el concepto de desarrollo en serie de Fourier. La noción de serie de Fourier se introducirá de forma abstracta en un espacio de Hilbert separable. En particular, también se estudiará el desarrollo en series de Fourier de funciones de cuadrado integrable en un intervalo compacto. En la última parte del curso se introducirá el concepto de transformada de Fourier, haciendo hincapié en los métodos de cálculo de transformadas y sus aplicaciones.
Requisitos
Objetivos
Comprender los conceptos básicos de la teoría de funciones de variable compleja. Manejar con soltura aplicaciones de esa teoría a distintas partes de las matemáticas, y en especial al cálculo de integrales de funciones de variable real, de gran utilidad en la estadística. Conocer y manejar aspectos y nociones elementales de espacios de Hilbert. Manejar las series y transformadas de Fourier, herramientas básicas de la estadística.
Contenido
1. Funciones de variable compleja. Teoremas básicos. Construcción de los números complejos. Representación de los números complejos. Módulo y argumento. Operaciones con números complejos. Series de potencias. Construcción de las funciones elementales: Exponencial, logaritmo y logaritmo principal, potencias, seno, coseno, etc. Integración sobre caminos y propiedades. Teorema de Cauchy-Goursat. Teorema de Derivación de Integrales. Teorema y Fórmula Integral de Cauchy. Teorema de Analiticidad de funciones Holomorfas. Desigualdades de Cauchy. Teorema de Liouville. Teorema Fundamental del Álgebra.
2. Teorema de Cauchy de los residuos y aplicaciones. Teorema de Laurent. Clasificación de singularidades: Singularidades aisladas. Teorema de los residuos de Cauchy. Cálculo de residuos. Cálculo de integrales reales de funciones racionales trigonométricas. Cálculo de integrales reales de funciones con polos en el semiplano superior. Cálculo de integrales reales de funciones con polos en el semiplano superior y eje real.
3. Espacios de Hilbert. Productos internos. Desigualdad de Cauchy-Schwarz. Normas y normas euclídeas. Convergencia en espacios euclídeos: Espacios de Hilbert. Ortogonalidad. Teorema de la Proyección Ortogonal sobre Convexos Cerrados. Proyección ortogonal sobre subespacios cerrados. Desigualdad de Bessel. Bases de Hilbert y series de Fourier en espacios de Hilbert con base de Hilbert. Identidad de Parseval. El espacio de funciones de cuadrado integrable L^2 [a,b]. Bases de Hilbert en L^2 [-pi,pi]. Series de Fourier en L^2 [-pi, pi].
4. Transformadas de Fourier. Definición en L^1 (R). Teorema de Inversión (informal). Fórmulas de cálculo de transformadas de Fourier. Translaciones, cambios de escala, modulaciones, derivadas, productos por x, funciones con saltos, etc. Convolución.
Evaluación
Contabilizará el 90%. El 10% restante se podrá alcanzar en pruebas evaluadas que se realicen en el semestre académico.
Bibliografía
M.S. Birman y M.Z. Solomjak, "Spectral theory of self-adjoint operators in Hilbert spaces", Springer, 1987.
J. E. Marsden y M. J. Hoffman, "Basic Complex Analysis'', 3ª edición, 1998.
Elias M. Stein y Rami Shakarchi, "Fourier Analysis: An Introduction" (Princeton Lectures in Analysis, Volume 1), Princeton University Press, 2003.
Elias M. Stein y Rami Shakarchi, "Complex Analysis" (Princeton Lectures in Analysis), Princeton University Press, 2003.
Otra información relevante
L. V. Ahfors, Análisis de Variable Compleja, Editorial Aguilar, 1966.
W. R. Derrick, "Variable compleja con aplicaciones'', Grupo Editorial Iberoamérica, 1987.
T. W. Gamelin, "Complex Analysis" (Undergraduate Texts in Mathematics), Springer, 2003.
E. Stade, "Fourier Analysis", Wiley-Interscience, 2005
Estructura
Módulos | Materias |
---|---|
No existen datos de módulos o materias para esta asignatura. |
Grupos
Clases teóricas | ||||
---|---|---|---|---|
Grupo | Periodos | Horarios | Aula | Profesor |
G1 | 09/09/2024 - 13/12/2024 | MIÉRCOLES 09:00 - 10:00 | S-106 | EVA ANTONIA GALLARDO GUTIERREZ |
JUEVES 09:00 - 10:00 | B07 | EVA ANTONIA GALLARDO GUTIERREZ | ||
G2 | 09/09/2024 - 13/12/2024 | MIÉRCOLES 13:00 - 14:00 | S-108 | JUAN BENIGNO SEOANE SEPULVEDA |
JUEVES 13:00 - 14:00 | B08 | JUAN BENIGNO SEOANE SEPULVEDA |
Clases prácticas | ||||
---|---|---|---|---|
Grupo | Periodos | Horarios | Aula | Profesor |
G1 | 09/09/2024 - 13/12/2024 | MIÉRCOLES 10:00 - 11:00 | S-106 | EVA ANTONIA GALLARDO GUTIERREZ |
JUEVES 10:00 - 11:00 | B07 | EVA ANTONIA GALLARDO GUTIERREZ | ||
G2 | 09/09/2024 - 13/12/2024 | MIÉRCOLES 14:00 - 15:00 | S-108 | JUAN BENIGNO SEOANE SEPULVEDA |
JUEVES 14:00 - 15:00 | B08 | JUAN BENIGNO SEOANE SEPULVEDA |